Once pipeline
- class OncePipeline(pipeline=None, *namespaces)[source]
- Pipeline that runs only once before or after the main pipeline - import_model(name, source)[source]
- Import a model - Parameters:
- name (str) – a name with which the model is stored in this pipeline 
- source – a model or a pipeline to import from 
 
 - Examples - Import a given model instance: - pipeline.before.import_model('my-model', custom_resnet_model) - Import my-model from the pipeline: - pipeline.before.import_model('my-model', train_pipeline) - Import resnet model from train_pipeline and give it a name my-model: - pipeline.before.import_model('my-model', train_pipeline.m('resnet')) 
 - init_lock(name='lock', **kwargs)[source]
- Create a lock as a pipeline variable - Parameters:
- name (string) – a lock name 
- Return type:
- self - in order to use it in the pipeline chains 
 - Examples - >>> pp = dataset.p.before .init_lock("model_update") 
 - init_model(name, model_class=None, mode='dynamic', config=None, source=None)[source]
- Initialize a static or dynamic model by building or importing it - Parameters:
- name (str) – a name for the model (to refer to it later when training or infering). 
- model_class (class or named expression) – a model class (might also be specified in the config). 
- mode ({'static', 'dynamic'}) – model creation mode: - static - the model is created right now, during the pipeline definition - dynamic - the model is created at the first iteration when the pipeline is run (default) 
- config (dict or Config) – (optional) model configurations parameters, where each key and value could be named expressions. 
- source – a model or a pipeline to import from 
 
 - Examples - Build a model: - pipeline.before.init_model('my-model', MyModel, 'static') - Import a model: - pipeline.before.init_model('my-model', source=train_pipeline) - Build a model with a config: - pipeline.before .init_variable('images_shape', [256, 256]) .init_model('my_model', MyModel, 'static', config={'input_shape': V('images_shape')}) pipeline.before .init_variable('shape_name', 'images_shape') .init_model('my_model', C('model'), 'dynamic', config={V('shape_name)': B('images_shape')}) 
 - init_variable(name, default=None, lock=True, **kwargs)[source]
- Create a variable if not exists. If the variable exists, does nothing. - Parameters:
- name (string) – a name of the variable 
- default – an initial value for the variable set when pipeline is created 
- lock (bool) – whether to lock a variable before each update (default: True) 
 
- Return type:
- self - in order to use it in the pipeline chains 
 - Examples - >>> pp = dataset.p.before .init_variable("iterations", default=0) .init_variable("accuracy") .init_variable("loss_history", []) 
 - save_to(dst, value=None)[source]
- Save a value of a given named expression lazily during pipeline execution - Parameters:
- dst (NamedExpression or any data container) – destination 
- value – an updating value, could be a value of any type or a named expression 
 
- Return type:
- self - in order to use it in the pipeline chains 
 - Notes - This method does not change a value of the variable until the pipeline is run. So it should be used in pipeline definition chains only. - save_data_to()is imperative and may be used to change variable value within actions.
 - update(expr, value=None)[source]
- Update a value of a given named expression lazily during pipeline execution - Parameters:
- expr (NamedExpression) – an expression 
- value – an updating value, could be a value of any type or a named expression 
 
- Return type:
- self - in order to use it in the pipeline chains 
 - Notes - This method does not change a value of the variable until the pipeline is run. So it should be used in pipeline definition chains only. - set_variableis imperative and may be used to change variable value within actions.