batchflow.models
- dataset.models.metrics
- Metrics
- ClassificationMetrics
ClassificationMetrics
ClassificationMetrics.accuracy()
ClassificationMetrics.append()
ClassificationMetrics.condition_negative()
ClassificationMetrics.condition_positive()
ClassificationMetrics.confusion_matrix
ClassificationMetrics.copy()
ClassificationMetrics.diagnostics_odds_ratio()
ClassificationMetrics.f1_score()
ClassificationMetrics.false_discovery_rate()
ClassificationMetrics.false_negative()
ClassificationMetrics.false_negative_rate()
ClassificationMetrics.false_omission_rate()
ClassificationMetrics.false_positive()
ClassificationMetrics.false_positive_rate()
ClassificationMetrics.free()
ClassificationMetrics.jaccard()
ClassificationMetrics.negative_likelihood_ratio()
ClassificationMetrics.negative_predictive_value()
ClassificationMetrics.one_hot()
ClassificationMetrics.plot_confusion_matrix()
ClassificationMetrics.positive_likelihood_ratio()
ClassificationMetrics.positive_predictive_value()
ClassificationMetrics.prediction_negative()
ClassificationMetrics.prediction_positive()
ClassificationMetrics.prevalence()
ClassificationMetrics.total_population()
ClassificationMetrics.true_negative()
ClassificationMetrics.true_negative_rate()
ClassificationMetrics.true_positive()
ClassificationMetrics.true_positive_rate()
ClassificationMetrics.update()
- SegmentationMetricsByPixels
- SegmentationMetricsByInstances
- batchflow.models.torch
Contains models
- class BaseModel[source]
Base interface for models.
- property default_name
Placeholder for model name.
- class SklearnModel(*args, **kwargs)[source]
Base class for scikit-learn models
- estimator
an instance of scikit-learn estimator
Notes
Configuration
estimator - an instance of scikit-learn estimator
load / path - a path to a pickled estimator
Examples
pipeline .init_model('static', SklearnModel, 'my_model', config={'estimator': sklearn.linear_model.SGDClassifier(loss='huber')}) pipeline .init_model('static', SklearnModel, 'my_model', config={'load/path': '/path/to/estimator.pickle'})
- load(path)[source]
Load the model.
- Parameters:
path (str) – a full path to a file from which a model will be loaded
- predict(x, *args, **kwargs)[source]
Predict with the data provided
- Parameters:
X (array-like) – Subset of the training data, shape (n_samples, n_features)
Notes
For more details and other parameters look at the documentation for the estimator used.
- Returns:
Predicted value per sample, shape (n_samples,)
- Return type:
array
- save(path)[source]
Save the model.
- Parameters:
path (str) – a full path to a file where a model will be saved to
- train(x, y, *args, **kwargs)[source]
Train the model with the data provided
- Parameters:
X (array-like) – Subset of the training data, shape (n_samples, n_features)
y (numpy array) – Subset of the target values, shape (n_samples,)
Notes
For more details and other parameters look at the documentation for the estimator used.