KerasNoduleVGG¶
-
class
radio.models.
KerasNoduleVGG
(config=None, *args, **kwargs)[source]¶ Bases:
radio.models.keras.keras_model.KerasModel
KerasNoduleVGG model for 3D scans implemented in keras.
Class extends KerasModel class.
Contains description of three types of blocks: ‘reduction_block_I’, ‘reduction_block_II’ and ‘classification_block’. NoduleVGG architecture is implemented inside _build method using these blocks.
-
config
¶ dict – config dictionary from dataset pipeline see configuring model section of dataset module https://analysiscenter.github.io/dataset/intro/models.html.
-
name
¶ str – name of the model.
-
units
¶ tuple(int, int) or int or None – number of units in final dense layers before tensor with predicitons. default: (512, 256).
-
num_targets
¶ int – size of tensor with predicitons. default: 1.
-
dropout_rate
¶ float – probability of dropout. default: 0.35.
Notes
Implementation requires the input tensor having shape=(batch_size, 32, 64, 64, 1).
-
reduction_block_I
(inputs, filters, scope, padding='same')[source]¶ Reduction block of type I for NoduleVGG architecture.
Applyes 3D-convolution with kernel size (3, 3, 3), (1, 1, 1) strides and ‘relu’ activation, after performs batch noramlization, then again 3D-convolution with kernel size (3, 3, 3), strides (1, 1, 1) and ‘relu’ activation, that batch normalization; After all applyes 3D maxpooling operation with strides (2, 2, 2) and pooling size (2, 2, 2).
Parameters: Returns: output tensor.
Return type: keras tensor
-
reduction_block_II
(inputs, filters, scope, padding='same')[source]¶ Reduction block of type II for NoduleVGG architecture.
Applyes 3D-convolution with kernel size (3, 3, 3), strides (1, 1, 1) and ‘relu’ activation, after that preform batch noramlization, repeates combo three times; Finally, adds 3D maxpooling layer with strides (2, 2, 2) and pooling size (2, 2, 2).
Parameters: Returns: output tensor.
Return type: keras tensor
-