Keras loss functions¶
-
radio.models.keras.losses.
dice_loss
(y_true, y_pred, smooth=1e-06)[source]¶ Loss function base on dice coefficient.
Parameters: - y_true (keras tensor) – tensor containing target mask.
- y_pred (keras tensor) – tensor containing predicted mask.
- smooth (float) – small real value used for avoiding division by zero error.
Returns: tensor containing dice loss.
Return type: keras tensor
-
radio.models.keras.losses.
tversky_loss
(y_true, y_pred, alpha=0.3, beta=0.7, smooth=1e-10)[source]¶ Tversky loss function.
Parameters: Returns: tensor containing tversky loss.
Return type: keras tensor
-
radio.models.keras.losses.
jaccard_coef_logloss
(y_true, y_pred, smooth=1e-10)[source]¶ Loss function based on jaccard coefficient.
Parameters: - y_true (keras tensor) – tensor containing target mask.
- y_pred (keras tensor) – tensor containing predicted mask.
- smooth (float) – small real value used for avoiding division by zero error.
Returns: tensor containing negative logarithm of jaccard coefficient.
Return type: keras tensor